Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nutrients ; 15(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004111

RESUMO

BACKGROUND: The physiopathology of sarcopenia is still not completely understood. AIM: To assess the relationship between dehydration and skeletal muscle catabolism, muscle mass, and sarcopenia in an aged population. METHODS: Observational cross-sectional study of community-dwelling subjects aged 70 years and older. Dehydration was assessed by plasma osmolarity; bioimpedance analysis (BIA) was used to assess body composition and water content; sarcopenia was established according to the EWGSOP-2 criteria; and 3-methyl-histidine (3MH) was used as an indicator of muscle catabolism. RESULTS: 190 participants were recruited (77.4 years; 51.6% women). In total, 22.6% and 20.5% presented plasma osmolarity of 295-300 mOsm/L and >300 mOsm/L, respectively. Age was correlated with plasma osmolarity (rs = 0.439; p < 0.001). Plasma osmolarity was correlated with 3MH (rs = 0.360; p < 0.001) and showed an effect on 3MH levels, with an adjusted (by age, sex, and number of medications) beta of 0.283 (p < 0.001). BIA water content indicators showed no correlation with 3MH. Lower in sarcopenic compared to non-sarcopenic subjects were the intracellular water percentage (60.3 vs. 61.2%; p = 0.004) and intracellular water/free-fat mass ratio (44.3 vs. 45.0; p = 0.004). CONCLUSIONS: Dehydration is a highly prevalent clinical condition in aged populations, increases with age, and is associated with muscle catabolism but not sarcopenia.


Assuntos
Sarcopenia , Idoso , Feminino , Humanos , Masculino , Estudos Transversais , Desidratação , Força da Mão/fisiologia , Músculo Esquelético , Sarcopenia/epidemiologia , Água
2.
Microb Cell Fact ; 22(1): 237, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978380

RESUMO

BACKGROUND: Methanol is increasingly gaining attraction as renewable carbon source to produce specialty and commodity chemicals, as it can be generated from renewable sources such as carbon dioxide (CO2). In this context, native methylotrophs such as the yeast Komagataella phaffii (syn Pichia pastoris) are potentially attractive cell factories to produce a wide range of products from this highly reduced substrate. However, studies addressing the potential of this yeast to produce bulk chemicals from methanol are still scarce. 3-Hydroxypropionic acid (3-HP) is a platform chemical which can be converted into acrylic acid and other commodity chemicals and biopolymers. 3-HP can be naturally produced by several bacteria through different metabolic pathways. RESULTS: In this study, production of 3-HP via the synthetic ß-alanine pathway has been established in K. phaffii for the first time by expressing three heterologous genes, namely panD from Tribolium castaneum, yhxA from Bacillus cereus, and ydfG from Escherichia coli K-12. The expression of these key enzymes allowed a production of 1.0 g l-1 of 3-HP in small-scale cultivations using methanol as substrate. The addition of a second copy of the panD gene and selection of a weak promoter to drive expression of the ydfG gene in the PpCß21 strain resulted in an additional increase in the final 3-HP titer (1.2 g l-1). The 3-HP-producing strains were further tested in fed-batch cultures. The best strain (PpCß21) achieved a final 3-HP concentration of 21.4 g l-1 after 39 h of methanol feeding, a product yield of 0.15 g g-1, and a volumetric productivity of 0.48 g l-1 h-1. Further engineering of this strain aiming at increasing NADPH availability led to a 16% increase in the methanol consumption rate and 10% higher specific productivity compared to the reference strain PpCß21. CONCLUSIONS: Our results show the potential of K. phaffii as platform cell factory to produce organic acids such as 3-HP from renewable one-carbon feedstocks, achieving the highest volumetric productivities reported so far for a 3-HP production process through the ß-alanine pathway.


Assuntos
Escherichia coli K12 , Metanol , Metanol/metabolismo , Escherichia coli K12/genética , Escherichia coli/metabolismo , beta-Alanina/genética , Engenharia Metabólica/métodos
3.
Microb Cell Fact ; 22(1): 117, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380999

RESUMO

BACKGROUND: Production of 3-hydroxypropionic acid (3-HP) through the malonyl-CoA pathway has yielded promising results in Pichia pastoris (Komagataella phaffii), demonstrating the potential of this cell factory to produce this platform chemical and other acetyl-CoA-derived products using glycerol as a carbon source. However, further metabolic engineering of the original P. pastoris 3-HP-producing strains resulted in unexpected outcomes, e.g., significantly lower product yield and/or growth rate. To gain an understanding on the metabolic constraints underlying these observations, the fluxome (metabolic flux phenotype) of ten 3-HP-producing P. pastoris strains has been characterized using a high throughput 13C-metabolic flux analysis platform. Such platform enabled the operation of an optimised workflow to obtain comprehensive maps of the carbon flux distribution in the central carbon metabolism in a parallel-automated manner, thereby accelerating the time-consuming strain characterization step in the design-build-test-learn cycle for metabolic engineering of P. pastoris. RESULTS: We generated detailed maps of the carbon fluxes in the central carbon metabolism of the 3-HP producing strain series, revealing the metabolic consequences of different metabolic engineering strategies aimed at improving NADPH regeneration, enhancing conversion of pyruvate into cytosolic acetyl-CoA, or eliminating by-product (arabitol) formation. Results indicate that the expression of the POS5 NADH kinase leads to a reduction in the fluxes of the pentose phosphate pathway reactions, whereas an increase in the pentose phosphate pathway fluxes was observed when the cytosolic acetyl-CoA synthesis pathway was overexpressed. Results also show that the tight control of the glycolytic flux hampers cell growth due to limited acetyl-CoA biosynthesis. When the cytosolic acetyl-CoA synthesis pathway was overexpressed, the cell growth increased, but the product yield decreased due to higher growth-associated ATP costs. Finally, the six most relevant strains were also cultured at pH 3.5 to assess the effect of a lower pH on their fluxome. Notably, similar metabolic fluxes were observed at pH 3.5 compared to the reference condition at pH 5. CONCLUSIONS: This study shows that existing fluoxomics workflows for high-throughput analyses of metabolic phenotypes can be adapted to investigate P. pastoris, providing valuable information on the impact of genetic manipulations on the metabolic phenotype of this yeast. Specifically, our results highlight the metabolic robustness of P. pastoris's central carbon metabolism when genetic modifications are made to increase the availability of NADPH and cytosolic acetyl-CoA. Such knowledge can guide further metabolic engineering of these strains. Moreover, insights into the metabolic adaptation of P. pastoris to an acidic pH have also been obtained, showing the capability of the fluoxomics workflow to assess the metabolic impact of environmental changes.


Assuntos
Carbono , Análise do Fluxo Metabólico , Acetilcoenzima A , Trifosfato de Adenosina
4.
Crit Care ; 27(1): 239, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328874

RESUMO

BACKGROUND: Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). METHODS: Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. RESULTS: All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. CONCLUSIONS: In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Suínos , Animais , Síndrome do Desconforto Respiratório/diagnóstico , Pulmão/patologia , Pneumonia/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Mecânica Respiratória , Respiração Artificial/efeitos adversos
5.
BioTech (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648832

RESUMO

Enzymes have been highly demanded in diverse applications such as in the food, pharmaceutical, and industrial fuel sectors. Thus, in silico bioprospecting emerges as an efficient strategy for discovering new enzyme candidates. A new program called ProspectBIO was developed for this purpose as it can find non-annotated sequences by searching for homologs of a model enzyme directly in genomes. Here we describe the ProspectBIO software methodology and the experimental validation by prospecting for novel lipases by sequence homology to Candida antarctica lipase B (CaLB) and conserved motifs. As expected, we observed that the new bioprospecting software could find more sequences (1672) than a conventional similarity-based search in a protein database (733). Additionally, the absence of patent protection was introduced as a criterion resulting in the final selection of a putative lipase-encoding gene from Ustilago hordei (UhL). Expression of UhL in Pichia pastoris resulted in the production of an enzyme with activity towards a tributyrin substrate. The recombinant enzyme activity levels were 4-fold improved when lowering the temperature and increasing methanol concentrations during the induction phase in shake-flask cultures. Protein sequence alignment and structural modeling showed that the recombinant enzyme has high similarity and capability of adjustment to the structure of CaLB. However, amino acid substitutions identified in the active pocket entrance may be responsible for the differences in the substrate specificities of the two enzymes. Thus, the ProspectBIO software allowed the finding of a new promising lipase for biotechnological application without the need for laborious and expensive conventional bioprospecting experimental steps.

6.
Front Bioeng Biotechnol ; 10: 1003012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246370

RESUMO

[This corrects the article DOI: 10.3389/fbioe.2022.942304.].

7.
Front Cell Dev Biol ; 10: 959468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187490

RESUMO

The Anabaena genus is a model organism of filamentous cyanobacteria whose vegetative cells can differentiate under nitrogen-limited conditions into a type of cell called a heterocyst. These heterocysts lose the possibility to divide and are necessary for the filament because they can fix and share environmental nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged to form a quasi-regular pattern whose features are maintained as the filament grows. Recent efforts have allowed advances in the understanding of the interactions and genetic mechanisms underlying this dynamic pattern. Here, we present a systematic review of the existing theoretical models of nitrogen-fixing cell differentiation in filamentous cyanobacteria. These filaments constitute one of the simplest forms of multicellular organization, and this allows for several modeling scales of this emergent pattern. The system has been approached at three different levels. From bigger to smaller scale, the system has been considered as follows: at the population level, by defining a mean-field simplified system to study the ratio of heterocysts and vegetative cells; at the filament level, with a continuous simplification as a reaction-diffusion system; and at the cellular level, by studying the genetic regulation that produces the patterning for each cell. In this review, we compare these different approaches noting both the virtues and shortcomings of each one of them.

8.
Front Bioeng Biotechnol ; 10: 942304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935509

RESUMO

Production of 3-hydroxypropionic acid (3-HP) in Pichia pastoris (syn. Komagataella phaffii) via the malonyl-CoA pathway has been recently demonstrated using glycerol as a carbon source, but the reported metrics were not commercially relevant. The flux through the heterologous pathway from malonyl-CoA to 3-HP was hypothesized as the main bottleneck. In the present study, different metabolic engineering approaches have been combined to improve the productivity of the original 3-HP producing strains. To do so, an additional copy of the gene encoding for the potential rate-limiting step of the pathway, i.e., the C-terminal domain of the malonyl-CoA reductase, was introduced. In addition, a variant of the endogenous acetyl-CoA carboxylase (ACC1 S1132A ) was overexpressed with the aim to increase the delivery of malonyl-CoA. Furthermore, the genes encoding for the pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthase, respectively, were overexpressed to enhance conversion of pyruvate into cytosolic acetyl-CoA, and the main gene responsible for the production of the by-product D-arabitol was deleted. Three different screening conditions were used to classify the performance of the different strains: 24-deep-well plates batch cultures, small-scale cultures in falcon tubes using FeedBeads® (i.e., slow release of glycerol over time), and mini bioreactor batch cultures. The best two strains from the FeedBeads® screening, PpHP8 and PpHP18, were tested in bioreactor fed-batch cultures using a pre-fixed exponentially increasing feeding rate. The strain PpHP18 produced up to 37.05 g L-1 of 3-HP at 0.712 g L-1 h-1 with a final product yield on glycerol of 0.194 Cmol-1 in fed-batch cultures. Remarkably, PpHP18 did not rank among the 2-top producer strains in small scale batch cultivations in deep-well plates and mini bioreactors, highlighting the importance of multiplexed screening conditions for adequate assessment of metabolic engineering strategies. These results represent a 50% increase in the product yield and final concentration, as well as over 30% increase in volumetric productivity compared to the previously obtained metrics for P. pastoris. Overall, the combination of glycerol as carbon source and a metabolically engineered P. pastoris strain resulted in the highest 3-HP concentration and productivity reported so far in yeast.

9.
PLoS Comput Biol ; 18(8): e1010359, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35969646

RESUMO

The Anabaena genus is a model organism of filamentous cyanobacteria whose vegetative cells can differentiate under nitrogen-limited conditions into a type of cell called heterocyst. These heterocysts lose the possibility to divide and are necessary for the colony because they can fix and share environmental nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged to form a quasi-regular pattern whose features are maintained as the filament grows. Recent efforts have allowed advances in the understanding of the interactions and genetic mechanisms underlying this dynamic pattern. However, the main role of the patA and hetF genes are yet to be clarified; in particular, the patA mutant forms heterocysts almost exclusively in the terminal cells of the filament. In this work, we investigate the function of these genes and provide a theoretical model that explains how they interact within the broader genetic network, reproducing their knock-out phenotypes in several genetic backgrounds, including a nearly uniform concentration of HetR along the filament for the patA mutant. Our results suggest a role of hetF and patA in a post-transcriptional modification of HetR which is essential for its regulatory function. In addition, the existence of molecular leakage out of the filament in its boundary cells is enough to explain the preferential appearance of terminal heterocysts, without any need for a distinct regulatory pathway.


Assuntos
Anabaena , Regulação Bacteriana da Expressão Gênica , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes , Nitrogênio/metabolismo
10.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35657374

RESUMO

To successfully design expression systems for industrial biotechnology and biopharmaceutical applications; plasmid stability, efficient synthesis of the desired product and the use of selection markers acceptable to regulatory bodies are of utmost importance. In this work we demonstrate the application of a set of IPTG-inducible protein expression systems -- harboring different features namely, antibiotic vs auxotrophy marker; two-plasmids vs single plasmid expression system; expression levels of the repressor protein (LacI) and the auxotrophic marker (glyA) -- in high-cell density cultures to evaluate their suitability in bioprocess conditions that resemble industrial settings. Results revealed that the first generation of engineered strain showed a 50% reduction in the production of the model recombinant protein fuculose-1-phosphate aldolase (FucA) compared to the reference system from QIAGEN. The over-transcription of glyA was found to be a major factor responsible for the metabolic burden. The second- and third-generation of expression systems presented an increase in FucA production and advantageous features. In particular, the third-generation expression system is antibiotic-free, autotrophy-selection based and single-plasmid and, is capable to produce FucA at similar levels compared to the original commercial expression system. These new tools open new avenues for high-yield and robust expression of recombinant proteins in E. coli.


Assuntos
Técnicas de Cultura Celular por Lotes , Escherichia coli , Aldeído Liases/genética , Aldeído Liases/metabolismo , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Fosfatos/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/metabolismo
11.
Nat Commun ; 13(1): 3028, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641538

RESUMO

Epidemic control often requires optimal distribution of available vaccines and prophylactic tools, to protect from infection those susceptible. Well-established theory recommends prioritizing those at the highest risk of exposure. But the risk is hard to estimate, especially for diseases involving stigma and marginalization. We address this conundrum by proving that one should target those at high risk only if the infection-averting efficacy of prevention is above a critical value, which we derive analytically. We apply this to the distribution of pre-exposure prophylaxis (PrEP) of the Human Immunodeficiency Virus (HIV) among men-having-sex-with-men (MSM), a population particularly vulnerable to HIV. PrEP is effective in averting infections, but its global scale-up has been slow, showing the need to revisit distribution strategies, currently risk-based. Using data from MSM communities in 58 countries, we find that non-selective PrEP distribution often outperforms risk-based, showing that a logistically simpler strategy is also more effective. Our theory may help design more feasible and successful prevention.


Assuntos
Infecções por HIV , Profilaxia Pré-Exposição , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Homossexualidade Masculina , Humanos , Masculino , Estigma Social
12.
BMC Biol ; 20(1): 90, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459165

RESUMO

BACKGROUND: The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions. RESULTS: Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin. CONCLUSIONS: We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex.


Assuntos
Actinas , Actomiosina , Citoesqueleto de Actina , Modelos Biológicos , Miosinas
13.
Pharmaceutics ; 13(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834382

RESUMO

Currently, three human papillomavirus (HPV) vaccines are already licensed and all of them are based on virus-like particles (VLPs) of HPV L1 capsid protein but not worldwide accessible. While about 38.0 million people were living with HIV in 2019, only 68% of HIV-infected individuals were accessing antiretroviral therapy as of the end of June 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against those two viruses are immediately needed. Both HPV and HIV are sexually transmitted infections and one of the main access routes is the mucosal genital tract. Thus, the development of a combined vaccine that would protect against HPV and HIV infections is a logical effort in the fight against these two major global pathogens. In this study, a recombinant Pichia pastoris producing chimeric HPV-HIV L1P18 protein intracellularly was constructed. After cell disruption, the supernatant was collected, and the VLPs were purified by a combination of ammonium sulfate precipitation, size exclusion chromatography, ultracentrifugation, and ultrafiltration. At the end of purification process, the chimeric VLPs were recovered with 96% purity and 9.23% overall yield, and the morphology of VLPs were confirmed by transmission electron microscopy. This work contributes towards the development of an alternative platform for production of a bivalent vaccine against HPV and HIV in P. pastoris.

14.
Microb Biotechnol ; 14(4): 1671-1682, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081409

RESUMO

The use of the methylotrophic yeast Pichia pastoris (Komagataella phaffi) to produce heterologous proteins has been largely reported. However, investigations addressing the potential of this yeast to produce bulk chemicals are still scarce. In this study, we have studied the use of P. pastoris as a cell factory to produce the commodity chemical 3-hydroxypropionic acid (3-HP) from glycerol. 3-HP is a chemical platform which can be converted into acrylic acid and to other alternatives to petroleum-based products. To this end, the mcr gene from Chloroflexus aurantiacus was introduced into P. pastoris. This single modification allowed the production of 3-HP from glycerol through the malonyl-CoA pathway. Further enzyme and metabolic engineering modifications aimed at increasing cofactor and metabolic precursors availability allowed a 14-fold increase in the production of 3-HP compared to the initial strain. The best strain (PpHP6) was tested in a fed-batch culture, achieving a final concentration of 3-HP of 24.75 g l-1 , a product yield of 0.13 g g-1 and a volumetric productivity of 0.54 g l-1  h-1 , which, to our knowledge, is the highest volumetric productivity reported in yeast. These results benchmark P. pastoris as a promising platform to produce bulk chemicals for the revalorization of crude glycerol and, in particular, to produce 3-HP.


Assuntos
Benchmarking , Glicerol , Chloroflexus , Ácido Láctico/análogos & derivados , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales
15.
Essays Biochem ; 65(2): 293-307, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-33956085

RESUMO

Besides bakers' yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia pastoris) has been developed into the most popular yeast cell factory for the production of heterologous proteins. Strong promoters, stable genetic constructs and a growing collection of freely available strains, tools and protocols have boosted this development equally as thorough genetic and cell biological characterization. This review provides an overview of state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for the production of recombinant proteins with a focus on small-scale production for biochemical studies and protein characterization. The growing applications of P. pastoris for in vivo biotransformation and metabolic pathway engineering for the production of bulk and specialty chemicals are highlighted as well.


Assuntos
Engenharia Metabólica , Pichia , Engenharia Metabólica/métodos , Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales
16.
N Biotechnol ; 60: 85-95, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33045421

RESUMO

Pichia pastoris (Komagataella spp.) has become one of the most important host organisms for production of heterologous proteins of biotechnological interest, many of them extracellular. The protein secretion pathway has been recognized as a limiting process in which many roadblocks have been pinpointed. Recently, we have identified a bottleneck at the ER translocation level. In earlier exploratory studies, this limitation could be largely overcome by using an improved chimeric secretion signal to drive proteins through the co-translational translocation pathway. Here, we have further tested at bioreactor scale the improved secretion signal consisting of the pre-Ost1 signal sequence, which drives proteins through co-translational translocation, followed by the pro region from the secretion signal of the Saccharomyces cerevisiae α-factor mating pheromone. For comparison, the commonly used full-length α-factor secretion signal, which drives proteins through post-translational translocation, was tested. These two secretion signals were fused to three different model proteins: the tetrameric red fluorescent protein E2-Crimson, which can be used to visualize roadblocks in the secretory pathway; the lipase 2 from Bacillus thermocatenulatus (BTL2); and the Rhizopus oryzae lipase (ROL). All strains were tested in batch cultivation to study the different growth parameters obtained. The strains carrying the improved secretion signal showed increased final production of the proteins of interest. Interestingly, they were able to grow at significantly higher maximum specific growth rates than their counterparts carrying the conventional secretion signal. These results were corroborated in a 5 L fed-batch cultivation, where the final product concentration and volumetric productivity were also shown to be improved.


Assuntos
Reatores Biológicos , Proteínas Fúngicas/biossíntese , Pichia/metabolismo , Pichia/citologia , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
17.
Commun Biol ; 3(1): 275, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483294

RESUMO

Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.


Assuntos
Bactérias/enzimologia , Microbioma Gastrointestinal , Expressão Gênica , Isópteros/fisiologia , Poaceae/química , Adaptação Biológica , Animais , Dieta , Digestão , Trato Gastrointestinal/fisiologia
18.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757828

RESUMO

High-level expression and secretion of heterologous proteins in yeast cause an increased energy demand, which may result in altered metabolic flux distributions. Moreover, recombinant protein overproduction often results in endoplasmic reticulum (ER) stress and oxidative stress, causing deviations from the optimal NAD(P)H regeneration balance. In this context, overexpression of genes encoding enzymes catalyzing endogenous NADPH-producing reactions, such as the oxidative branch of the pentose phosphate pathway, has been previously shown to improve protein production in Pichia pastoris (syn. Komagataella spp.). In this study, we evaluate the overexpression of the Saccharomyces cerevisiaePOS5-encoded NADH kinase in a recombinant P. pastoris strain as an alternative approach to overcome such redox constraints. Specifically, POS5 was cooverexpressed in a strain secreting an antibody fragment, either by directing Pos5 to the cytosol or to the mitochondria. The physiology of the resulting strains was evaluated in continuous cultivations with glycerol or glucose as the sole carbon source, as well as under hypoxia (on glucose). Cytosolic targeting of Pos5 NADH kinase resulted in lower biomass-substrate yields but allowed for a 2-fold increase in product specific productivity. In contrast, Pos5 NADH kinase targeting to the mitochondria did not affect growth physiology and recombinant protein production significantly. Growth physiological parameters were in silico evaluated using the recent upgraded version (v3.0) of the P. pastoris consensus genome-scale metabolic model iMT1026, providing insights on the impact of POS5 overexpression on metabolic flux distributions.IMPORTANCE Recombinant protein overproduction often results in oxidative stress, causing deviations from the optimal redox cofactor regeneration balance. This becomes one of the limiting factors in obtaining high levels of heterologous protein production. Overexpression of redox-affecting enzymes has been explored in other organisms, such as Saccharomyces cerevisiae, as a means to fine tune the cofactor regeneration balance in order to obtain higher protein titers. In the present work, this strategy is explored in P. pastoris In particular, one NADH kinase enzyme from S. cerevisiae (Pos5) is used, either in the cytosol or in mitochondria of P. pastoris, and its impact on the production of a model protein (antibody fragment) is evaluated. A significant improvement in the production of the model protein is observed when the kinase is directed to the cytosol. These results are significant in the field of heterologous protein production in general and in particular in the development of improved metabolic engineering strategies for P. pastoris.


Assuntos
Regulação Fúngica da Expressão Gênica , Microrganismos Geneticamente Modificados/genética , Proteínas Mitocondriais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pichia/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Engenharia Metabólica , Microrganismos Geneticamente Modificados/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
AIDS Rev ; 21(4): 218-232, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834327

RESUMO

Virus-like particles (VLPs) are a type of subunit vaccine which resembles viruses but do not contain any genetic material so that they are not infectious. VLPs maintain the same antigenic conformation to the original virus, and they could be a better vaccine candidate than live-attenuated and inactivated vaccines. In addition, compared to other subunit vaccines such as soluble protein, VLPs can stimulate both innate and adaptive immune responses effectively and safely against several pathogens by the closer morphology to its native virus. They have already been licensed as vaccines against Hepatitis B virus, human papillomavirus (HPV), and several veterinary diseases. Moreover, it has been investigated to prevent other viral infections including HIV. While HIV VLP-based vaccines have been studied over 35 years, none of them has been successful enough to reach even Phase III clinical trials. In this review, we summarize: (i) general features of VLPs; (ii) epidemiological data and current status of vaccine research and development on HPV and HIV; and (iii) previous studies held on HPV VLPs, HIV VLPs, and chimeric HPV/HIV VLPs including production methods and different animal immunization assays. Furthermore, we review present state of human clinical trials with VLPs and consider the potential to develop a successful preventive HIV vaccine using HPV VLP models. Finally, we discuss the benefits, limitations, and challenges of developing chimeric VLP-based HPV/HIV vaccines with recent findings, critical issues to improve VLP-based vaccines, and hot topics for the next 5 years to join the global effort to fight against these two pathogens.


Assuntos
Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/isolamento & purificação , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas contra a AIDS/genética , Ensaios Clínicos como Assunto , Saúde Global , HIV/genética , HIV/imunologia , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Humanos , Papillomaviridae/genética , Papillomaviridae/imunologia , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/genética , Vacinas de Partículas Semelhantes a Vírus/genética
20.
Metab Eng Commun ; 9: e00103, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720218

RESUMO

Pichia pastoris is recognized as a biotechnological workhorse for recombinant protein expression. The metabolic performance of this microorganism depends on genetic makeup and culture conditions, amongst which the specific growth rate and oxygenation level are critical. Despite their importance, only their individual effects have been assessed so far, and thus their combined effects and metabolic consequences still remain to be elucidated. In this work, we present a comprehensive framework for revealing high-order (i.e., individual and combined) metabolic effects of the above parameters in glucose-limited continuous cultures of P. pastoris, using thaumatin production as a case study. Specifically, we employed a rational experimental design to calculate statistically significant metabolic effects from multiple chemostat data, which were later contextualized using a refined and highly predictive genome-scale metabolic model of this yeast under the simulated conditions. Our results revealed a negative effect of the oxygenation on the specific product formation rate (thaumatin), and a positive effect on the biomass yield. Notably, we identified a novel positive combined effect of both the specific growth rate and oxygenation level on the specific product formation rate. Finally, model predictions indicated an opposite relationship between the oxygenation level and the growth-associated maintenance energy (GAME) requirement, suggesting a linear GAME decrease of 0.56 mmol ATP/gDCW per each 1% increase in oxygenation level, which translated into a 44% higher metabolic cost under low oxygenation compared to high oxygenation. Overall, this work provides a systematic framework for mapping high-order metabolic effects of different culture parameters on the performance of a microbial cell factory. Particularly in this case, it provided valuable insights about optimal operational conditions for protein production in P. pastoris.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...